Оптические методы исследования клетки

Оптические методы исследования клетки

Впервые клетки удалось увидеть только после создания световых микроскопов, с того времени и до сих пор микроскопия остается одним из важнейших методов исследования клеток. Световая (оптическая) микроскопия, несмотря на своё сравнительно небольшое разрешение, позволяла наблюдать за живыми клетками. В ХХ веке была изобретена электронная микроскопия, давшая возможность изучить ультраструктуру клеток.

Для изучения функций клеток и их частей используют разнообразные биохимические методы — как препаративные, например фракционирование методом дифференциального центрифугирования, так и аналитические. Для экспериментальных и практических целей используют методы клеточной инженерии. Все упомянутые методические подходы могут использоваться в сочетании с методами культуры клеток.

Диаметр типичной клетки животных составляет 10-20 мкм, что в пять раз меньше мельчайшей видимой частицы. Только с появлением совершенных световых микроскопов в начале XIX века удалось установить тот факт, что все ткани животных и растений состоят из отдельных клеток. Это открытие, обобщенное в форме клеточной теории Шлейденом и Шванном в 1838 году, знаменует собой начало клеточной биологии.

Будучи чрезвычайно малыми по размерам, животные клетки к тому же бесцветны и прозрачны: следовательно, открытие их основных структур стало возможным благодаря разработке набора красителей в конце XIX столетия. Именно красители обеспечили достаточный контраст для наблюдения субклеточных структур. Сходная ситуация наблюдалась в начале 40-х годов нашего столетия, когда изобретение мощного электронного микроскопа потребовало новых методов сохранения и окраски клеток. И только после того, как они были разработаны, начала проявляться вся сложность клеточной структуры. В основе микроскопии как методологии до сих пор лежат способы приготовления образца и возможности самого микроскопа.

Рассмотрим следующие методы исследования структуры клетки:

1) Световая микроскопия, которая подразделяется на следующие виды: обычная оптическая, флуоресцентная, фазово-контрастная и интерференционная; 2) Электронная микроскопия; 3) Рентгеноскопия; 4) Фракционирование клеток.

Обычная оптическая микроскопия.

В общем случае излучение данной длины волны может быть использовано для изучения только таких структур, минимальные размеры которых еще сопоставимы с длиной волны самого излучения. Этот принцип ограничивает возможности любого микроскопа. Предел разрешения светового микроскопа задается длиной световой волны, которая для видимого света лежит в пределах от 0,4 мкм (фиолетовый) до 0,7 мкм (темно-красный). Из этого следует, что самыми маленькими объектами, которые еще можно наблюдать в световой микроскоп, являются бактерии и митохондрии (их ширина ~ 0,5 мкм). Более мелкие элементы клетки искажаются эффектами, вызванными волновой природой света.

Для приготовления постоянного препарата, который можно окрасить и наблюдать в микроскоп, клетки обрабатывают фиксирующим агентом с тем, чтобы иммобилизировать, убить и сохранить их. В современных методах, как правило, используется обработка альдегидами, например, формальдегидом или глутаральдегидом, которые формируют ковалентные связи со свободными аминогруппами белков и, таким образом, сшивают соседние молекулы.

После фиксации ткани обычно режут на очень тонкие «ломтики» (срезы) на микротоме. Срезы толщиной от 1 до 10 мкм помещают на поверхность предметного стекла. В качестве заключающих сред используют парафин или специальную смолу. В жидком виде эти среды пропитывают и окружают фиксированную ткань: затем они затвердевают при охлаждении или за счет полимеризации, образуя твердый блок, который удобно резать на микротоме.

Существует серьезная опасность того, что процедуры фиксации или заключения могут повредить структуру клеток или клеточных макромолекул. Вот почему предложен другой метод приготовления срезов — быстрое замораживание. Замороженную ткань режут на криостате в специальном микротоме, установленном в холодной камере.

В содержимом большинства клеток, состоящих, как правило, на 70% из воды, практически отсутствуют компоненты, способные помешать прохождению световых лучей. Поэтому в естественном состоянии большинство клеток даже после фиксации и приготовления срезов практически невидимы в обычном световом микроскопе. Одна из возможностей их увидеть состоит в окраске клеток красителями.

Флуоресцентная микроскопия.

Поскольку большинство макромолекул представлены в клетках относительно незначительным числом копий, одна или две молекулы красителя, связанные с макромолекулой, могут оставаться незамеченными. Альтернативный подход к проблеме чувствительности состоит в использовании флуоресценции.

Флуоресцирующие красители поглощают свет одной длины волны и излучают свет другой длины волны, более длинной. Если такое вещество облучить светом, длина волны которого совпадает с длиной волны света, поглощаемого красителем, и затем для анализа использовать фильтр, пропускающий свет с длиной волны, соответствующей свету, излучаемому красителем, флуоресцирующую молекулу можно выявить по свечению на темном поле. Высокая интенсивность излучаемого света является характерной особенностью таких молекул.

Применение флуоресцирующих красителей для окраски клеток предполагает использование специального флуоресцентного микроскопа. Такой микроскоп похож на обычный световой микроскоп, но здесь свет от осветителя, излучаемый мощным источником, проходит через два набора фильтров — один для задержания света перед образцом и другой для фильтрации света, полученного от образца.

Флуоресцентная микроскопия часто используется для выявления специфических белков или других молекул, которые становятся флуоресцирующими после ковалентного связывания с флуоресцирующими красителями. Например, флуоресцирующие красители могут быть связаны с молекулами антител, что сразу же превращает их в высоко специфические и удобные красящие реагенты, селективно связывающиеся со специфическими макромолекулами на поверхности живой либо внутри фиксированной клетки. Для этой цели обычно используют два красителя — флуоресцеин, который дает интенсивную желто-зеленую флуоресценцию после возбуждения светло-голубым светом, и родамин, обусловливающий темно-красную флуоресценцию после возбуждения желто-зеленым светом.

Фазово-контрастная и интерференционная микроскопия.

Возможность потери или нарушения образцов в процессе их приготовления всегда беспокоила микроскопистов. Единственный способ решить эту проблему состоит в изучении живых клеток без фиксации или замораживания. Для этой цели очень полезны микроскопы со специальными оптическими системами.

При прохождении света через живую клетку фаза световой волны меняется согласно коэффициенту рефракции клетки: свет, проходящий через относительно тонкие или относительно толстые участки клетки, такие, как ядро, задерживается, и его фаза соответственно сдвигается по отношению к фазе света, проходящего через относительно тонкие участки цитоплазмы. Как в фазово-контрастном, так и в интерференционном микроскопе используются эффекты интерференции, возникающие при рекомбинации двух наборов волн, которые и создают изображение клеточных структур. Оба типа световой микроскопии широко используются для наблюдения живых клеток.

Простейший способ разглядеть детали клеточной структуры — наблюдать свет, рассеивающийся различными компонентами клетки. В темнопольном микроскопе лучи от осветителя направляются сбоку и при этом в линзы микроскопа попадают только рассеянные лучи. Соответственно клетка выглядит как освещенный объект на темном поле. Одним из основных преимуществ фазово-контрастной, интерференционной и темнопольной микроскопии является возможность наблюдать движение клеток в процессе митоза и миграции.

Видеокамеры и соответствующие технологии обработки изображения значительно увеличили возможности световой микроскопии. Это позволило наблюдать клетки в течение длительного времени при низкой освещенности, исключая длительное воздействие яркого света (или тепла). Поскольку изображение создается видеокамерой в форме электронных сигналов, его можно соответствующим образом преобразовать в числовые сигналы, направить в компьютер и затем подвергнуть дополнительной обработке для извлечения скрытой информации. Эти и подобные методы обработки изображения позволяют компенсировать оптические недостатки микроскопов и практически достичь предела разрешения.

Высокий контраст, достижим с помощью компьютерной интерференционной микроскопии, позволяет наблюдать даже очень мелкие объекты, как, например, отдельные микротрубочки, диаметр которых менее одной десятой длины волны света (0,025 мкм). Отдельные микротрубочки можно увидеть и с помощью флуоресцентной микроскопии. Однако в обоих случаях неизбежны эффекты дифракции, сильно изменяющие изображение. Диаметр микротрубочек при этом завышается (0,2 мкм), что не позволяет отличать отдельные микротрубочки от пучка из нескольких микротрубочек.

Электронная микроскопия.

Взаимосвязь длины волны света и предела разрешения сохраняется для любой формы излучения, как для световых лучей, так и для электронов. Однако в последнем случае предел разрешения существенно ниже. Длина волны электрона уменьшается с увеличением его скорости. В электронном микроскопе с напряжением 100000 В длина волны электрона равна 0.004 нм, а согласно теории, разрешение такого микроскопа составляет 0,002 нм.

Общая схема просвечивающего электронного микроскопа (ПЭМ) напоминает схему светового, хотя электронный микроскоп значительно больше и как бы перевернут. Источник излучения — нить катода, испускающая электроны с вершины цилиндрической колонны высотой около двух метров. Поскольку при столкновении с молекулами воздуха электроны рассеиваются, в колонне должен быть создан вакуум. Электроны, излучаемые катодной нитью, ускоряются ближайшим анодом и проникают через крошечное отверстие, формируя электронный луч, проходящий в нижнюю часть колонны. Вдоль колонны на некотором расстоянии расположены кольцевые магниты, фокусирующие электронный луч, подобно стеклянным линзам, фокусирующим луч света в световом микроскопе. Образец через воздушный шлюз помещают в вакуум колонны, на пути электронного пучка. Часть электронов в момент прохождения через образец рассеивается согласно плотности вещества в данном участке, остаток электронов фокусируется и образует изображение на фотопластинке или на фосфоресцирующем экране.

В электронном микроскопе нельзя наблюдать живые объекты. Поэтому ткани фиксируют, сшивая клетки и клеточные структуры глутаральдегидом, а затем обрабатывают осмиевой кислотой. Образцы обезвоживают, фиксируют смолами и нарезают тонким стеклянным или алмазным ножом.

Тонкие срезы практически являются двумерными срезами ткани и не позволяют судить о трехмерной структуре клеточных компонентов. Трехмерное изображение можно получить после реконструкции сотен серийных срезов. В настоящее время разработаны более прямые методы получения трехмерного изображения. Один из них состоит в изучении образца под сканирующим электронным микроскопом. Для получения изображения в просвечивающем электронном микроскопе используют электроны, проходящие через образец, а в сканирующем электронном микроскопе используются электроны, рассеиваемые или излучаемые поверхностью образца. В данном случае образец должен быть зафиксирован, высушен и покрыт тонкой пленкой тяжелого металла. Затем образец сканируется очень узким пучком электронов. Таким образом, происходит формирование единого, цельного и значительно увеличенного изображения.

Метод сканирующей электронной микроскопии обеспечивает значительную глубину фокусировки; более того, поскольку масштабы рассеивания электронов определяются углом поверхности по отношению к лучу, на изображении возникают чередующиеся светлые и темные участки, создающие впечатление трехмерности. Но этот метод применим только для изучения поверхности и его разрешение сравнительно невелико (около 10 нм с эффективным увеличением примерно 20 тыс. раз). Данный метод практически неприменим для изучения субклеточных органелл и используется исключительно для изучения целых клеток и тканей.

Просвечивающий электронный микроскоп можно использовать для изучения поверхности образца с очень большим увеличением, наблюдая отдельные макромолекулы. Как и при сканирующей электронной микроскопии, на высушенный образец напыляется тонкая пленка тяжелого металла. Металл напыляется под определенным углом, так что отложения напыленной пленки в некоторых местах толще, чем в других. Этот процесс известен как оттенение — здесь возникает эффект тени, создающий впечатление трехмерности изображения.

Приготовленные таким образом образцы могут быть достаточно малы и тонки, чтобы электронный луч проникал сквозь них; например, таким способом можно анализировать индивидуальные молекулы, вирусы и стенки клеток. Что же касается более толстых образцов, то здесь после оттенения необходимо удалить органический материал клетки, при этом на поверхности образца останется только тонкий металлический отпечаток или реплика поверхности. Эта реплика затем усиливается углеродной пленкой, после чего ее можно поместить на сетку и изучать в обычном электронном микроскопе.

В клеточной биологии особенно успешно используются два метода, основанные на получении механических реплик. Один из них — метод электронной микроскопии «замораживание-скалывание» — дает возможность изучать внутреннее строение клеточных мембран. Клетки замораживают при температуре жидкого азота (-196’С). Замороженный блок затем раскалывают лезвием ножа. Скол часто проходит через гидрофобную середину двойного слоя липидов, обнажая внутреннюю поверхность клеточных мембран. Образующуюся поверхность скола оттеняют платиной, органический материал удаляют и изучают полученные реплики в электронном микроскопе.

Метод «замораживания — травления» используется для изучения внешней поверхности клеток и мембран. В данном случае клетки замораживают при очень низкой температуре, и замороженный блок раскалывают лезвием ножа. Содержание льда вокруг клеток (и в меньшей степени внутри клеток) понижают возгонкой воды в вакууме при повышении температуры (процесс называют вакуумной сушкой). Участки клетки, подвергнутые такому травлению, затем оттеняют для приготовления платиновой реплики.

Для того чтобы добиться высокого качества изображения, препятствуют образованию больших кристаллов льда. Это возможно при ускоренном замораживании образца. Один из методов такого быстрого замораживания состоит в охлаждении до — 269°С жидким гелием. Особенно впечатляющие результаты получают после глубокого травления быстро замороженных клеток. Этот метод позволяет выявлять структуры внутреннего содержимого клеток, демонстрируя их трехмерную организацию с исключительной четкостью.

Поскольку в этом случае в микроскопе под вакуумом наблюдают не образцы, а реплики, полученные после оттенения металлом, методы замораживание-скалывание и замораживание-травление можно использовать для изучения замороженных нефиксированных клеток и исключить риск проявления артефактов, вызванных фиксацией.

Используя для контрастирования оттенение солями тяжелых металлов, можно наблюдать в электронный микроскоп изолированные макромолекулы, например, ДНК или большие белки, а после негативного контрастирования разрешению поддаются даже мельчайшие детали. При приготовлении образцов для негативного контрастирования исследуемые молекулы наносят на тонкую пленку углерода (практически прозрачную для электронов), затем ее смачивают концентрированным раствором солей тяжелых металлов, например, уранилацетата. После высушивания образца тонкая пленка солей тяжелых металлов равномерно покрывает углеродную подложку, за исключением участков, занятых адсорбированными макромолекулами. Вещество макромолекул более проницаемо для электронов по сравнению с прилежащими участками, покрытыми солями тяжелых металлов; за счет этого возникает обращенное или негативное изображение молекулы.

В настоящее время можно наблюдать с высоким разрешением даже внутренние детали трехмерных структур, таких, как вирусы. Для этого используют метод криоэлектронной микроскопии, где очень тонкий (примерно 100 нм), быстро замороженный слой влажного образца помещают на микроскопическую решетку. С помощью специального приспособления гидратированный образец удерживают при — 160°С в вакууме микроскопа. Таким способом можно наблюдать материал практически непосредственно: без фиксации, окраски и сушки.

Рентгеноскопия.

Рентгеновские лучи, подобно свету, являются одной из форм электромагнитного излучения, но вследствие того, что длина волны рентгеновских лучей значительно короче, их применение позволяет разрешить значительно более мелкие детали. В отличие от видимого света или потока электронов, рентгеновские лучи нельзя сфокусировать и после их прохождения через образец получить обычное изображение. Однако структуру образца можно выявить, используя метод дифракции рентгеновских лучей.

Рассеянное излучение можно рассматривать как набор перекрывающихся волн, каждая из которых отражается разными участками объекта. Если волны перекрываются, они подвергаются интерференции и возникает распределение излучения, известное как дифракционная картина. Дифракционная картина может быть зарегистрирована на фотопластинке, помещенной на некотором расстоянии от предмета, или представлена с помощью количества рассеянного излучения, отраженного объектом в разных направлениях. Форма дифракционной картины определяется структурой объекта. С другой стороны, исходя из полного описания дифракционной картины, можно теоретически рассчитать структуру данного объекта.

Полная дифракционная картина кристаллической решетки будет состоять из множества ярких пятен различной интенсивности. Относительная интенсивность различных пятен в дифракционной картине зависит от способности различных объектов в решетке рассеивать излучение. В действительности интенсивность данного пятна пропорциональна интенсивности излучения, которое будет отражаться в данном направлении от характерного одиночного объекта.

Таким образом, положение пятен в дифракционной картине зависит от расположения объекта в системе, а их интенсивность дает информацию о внутренней структуре типичного объекта. Более того, такая информация является точной и достаточной, поскольку она была получена путем объединения вкладов множества равноценных источников. Пользуясь довольно полным описанием дифракционной картины, можно зачастую вычислить структуру отдельных объектов, образующих кристаллическую решетку.

Длина волны рентгеновских лучей около 0.1 нм (что соответствует диаметру атома водорода), и поэтому данный тип излучения идеально подходит для анализа расположения индивидуальных атомов в молекулах. Такую задачу нельзя решить даже на самых современных электронных микроскопах. Существенным преимуществом рентгеновских лучей является высокая (выше, чем у электронов) проникающая способность. Это делает пригодными для анализа более толстые образцы. И, наконец, поскольку в данном случае использование вакуума не предусмотрено, можно изучать толстые водосодержащие образцы. Вследствие этого исключаются артефакты, возникающие в процессе приготовления образца.

Для достижения высокого разрешения необходимо иметь кристаллы с высокой степенью упорядоченности. По мере прохождения через образец рентгеновские лучи рассеиваются электронами атомов, составляющими образец. Поэтому большие атомы с большим количеством электронов рассеивают рентгеновские лучи более эффективно, чем небольшие атомы, так что атомы С, N, О, Р регистрируются гораздо более надежно, чем атомы Н.

Расшифровка рентгенограмм, образованных крупными и неупорядоченными молекулами белков, до 1960 года была невозможна. В последние годы рентгеноструктурный анализ все более автоматизируется. Рассеянные рентгеновские лучи измеряются электронными детекторами, а компьютеры выполняют необходимые вычисления. В настоящее время наиболее длительным этапом в подобном исследовании является этап получения подходящих кристаллов исследуемых макромолекул; зачастую на подбор оптимальных условий кристаллизации уходят годы. Имея хорошие кристаллы, можно рассчитать структуру белка с разрешением 0,3 нм и выявить не только основные закономерности расположения полипептидной цепи, но и некоторые более мелкие детали. Именно таким образом к настоящему времени были установлены структуры более сотни белков и нескольких малых молекул РНК и ДНК.

Фракционирование клеток.

Для установления функций отдельных компонентов клетки важно выделить их в чистом виде, чаще всего это делается с помощью метода дифференциального центрифугирования. Разработаны методики, позволяющие получить чистые фракции любых клеточных органелл. Получение фракций начинается с разрушения плазмалеммы и образования гомогенна клеток. Гомогенат последовательно центрифугируется при различных скоростях, на первом этапе можно получить четыре фракции: (1) ядер и крупных обломков клеток, (2) митохондрий, пластид, лизосом и пероксидом, (3) микросом — пузырьков аппарата Гольджи и эндоплазматического ретикулума, (4) рибосом, в супернатанте останутся белки и более мелкие молекулы. Дальнейшее дифференциальное центрифугирование каждой из смешанных фракций позволяет получить чистые препараты органелл, к которым можно применять разнообразные биохимические и микроскопические методы.

Широкое применение при изучении структуры клетки получили и спектроскопические методы — абсорбционная и флуоресцентная спектроскопия, дисперсия оптического вращения и круговой дихроизм, ядерный магнитный резонанс.

Абсорбционная спектроскопия основана на измерении степени поглощения света молекулами, которая зависит от их структуры и окружения. С помощью этого метода можно проводить измерение концентрации растворенных веществ, исследование химических реакций, идентификацию веществ. Измерение поглощения осуществляют с помощью спектрофотометра.

Для ряда молекул поглощение света сопровождается испусканием (флуоресценцией) света с большей длиной волны (то есть меньшей энергией). Спектры испускания также зависят от окружения молекул, поэтому регистрация и измерение таких спектров дает информацию о свойствах макромолекул и их взаимодействиях с другими молекулами. Прибор для измерения флуоресценции называют спектрофлуориметр и с помощью такого прибора изучают строение и структурные особенности белков и нуклеиновых кислот, определяют вязкость внутри живых клеток, проводят количественное определение ДНК и так далее.

Дисперсия оптического вращения и круговой дихроизм — методы, основанные на изучении взаимодействия оптически активных молекул с поляризованным светом. С помощью этих методов можно изучать структуру и пространственные изменения в ферментах, нуклеиновых кислотах и других биомолекулах, содержащих оптически активные центры.

Ядерный магнитный резонанс (ЯМР) — еще один спектроскопический метод, способный давать информацию о структуре веществ, взаимодействиях между молекулами и о молекулярном движении, в частности в белках и нуклеиновых кислотах. Ампулу с образцом помещают в магнитное поле и регистрируют резонансную частоту перехода атомных ядер и ее смещение, обусловленное окружением. Полученный спектр сравнивают с рассчитанным и с данными других методов исследований, и делают соответствующие выводы. Интерпретация результатов ЯМР-спектроскопии, в особенности применительно к молекулам большого размера, очень трудоемкая и непростая задача, которая под силу только специалистам — профессионалам в этой области.

Еще одним методом изучения клетки или ее части является авторадиография. Этот метод основан на поглощении радиоактивного изотопа клеткой и выявлении его внутриклеточной локализации. Полученные этим методом изображения изучают под микроскопом. Таким способом можно, например, подсчитывать число молекул ДНК, изучать влияние различных факторов на метаболизм клетки и так далее.

Очень важно отметить, что изучение структурной и химической организации клеток можно проводить только на специально подготовленных образцах. Для этого применяют целый ряд методов. Перед тем, как кратко охарактеризовать основные из них, следует выделить два основных пути исследования клеток.

  • · Первый — это наблюдение клеток в организме или в свежевыделенной из организма ткани;
  • · второй — наблюдение клеток, убитых с помощью специальных методов, сохраняющих их морфологическую и химическую структуру. Такие специальные методы называют фиксацией.

К методам исследования живых клеток относятся культура ткани и микрургия.

Культура ткани позволяет наблюдать клетку в наиболее благоприятных условиях. Этот метод заключается в том, что мелкие кусочки тканей помещают в среду, в которой клетки способны к автономному росту и, поддерживая температуру, свойственную организму, наблюдают их развитие и рост. Таким способом изучают пищевые потребности клетки, влияние на них различных экспериментальных условий, а также получают чистые клеточные линии.

Микрургия заключается в том, что внутрь клетки вводят какой-либо микроинструмент (микропипетка, микроигла, микроэлектрод и другие), движения которого в поле зрения микроскопа регулируются специальным приспособлением. Таким методом можно рассекать клетки и извлекать некоторые их части, вводить в клетку различные вещества, измерять ее электрическую активность или пересаживать отдельные органеллы из одной клетки в другую.

Фиксация представляет собой такой способ умерщвления клетки, который обеспечивает сохранение ее прижизненной структуры и в известной степени химического состава. Фиксацию проводят специальными реагентами (например, смесь абсолютного спирта и ледяной уксусной кислоты), путем быстрого замораживания и последующего обезвоживания в вакууме (лиофилизация) и другими методами. Подготовленные образцы окрашивают, делают необходимые срезы и исследуют с помощью указанных выше методов и приборов.



Source: studwood.ru


Добавить комментарий